Split-Channel Ballistic Transport in an InSb Nanowire.

نویسندگان

  • Juan Carlos Estrada Saldaña
  • Yann-Michel Niquet
  • Jean-Pierre Cleuziou
  • Eduardo J H Lee
  • Diana Car
  • Sébastien R Plissard
  • Erik P A M Bakkers
  • Silvano De Franceschi
چکیده

We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. A total of three bottom gates are used to locally deplete the nanowire, creating a ballistic quantum point contact with only a few conducting channels. In a magnetic field, the Zeeman splitting of the corresponding 1D sub-bands is revealed by the emergence of conductance plateaus at multiples of e2/h, yet we find a quantized conductance pattern largely dependent on the configuration of voltages applied to the bottom gates. In particular, we can make the first plateau disappear, leaving a first conductance step of 2 e2/ h, which is indicative of a remarkable 2-fold sub-band degeneracy that can persist up to several tesla. For certain gate voltage settings, we also observe the presence of discrete resonant states producing conductance features that can resemble those expected from the opening of a helical gap in the sub-band structure. We explain our experimental findings through the formation of two spatially separated 1D conduction channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions.

Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson jun...

متن کامل

Ballistic to Diffusive Crossover in III–V Nanowire Transistors

In this paper, we examine the crossover between 4 ballistic and diffusive transport in III–V nanowire transistors. 5 We find that at lower drain voltages the ballistic-to-diffusive 6 crossover occurs at channel lengths of approximately 2.3 nm at 7 room temperature. However, when we increase the drain voltage, 8 we find that the ballistic-to-diffusive crossover can be more than 9 nine times as l...

متن کامل

Observation of Conductance Quantization in InSb Nanowire Networks

Majorana zero modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offer a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in...

متن کامل

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

Ballistic superconductivity in semiconductor nanowires

Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره   شماره 

صفحات  -

تاریخ انتشار 2018